GISMO:  Mass Balance Constraints on Measured Ice thickness, Surface Velocity and Associated Gradients
Ice sheet mass balance is estimated via the depth integrated mass continuity equation.  The continuity equation is frequently written as
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where H is the ice thickness, U is the velocity and M is the net accumulation/ablation rate (van der Veen, p 151).  This equation is only used rarely for estimating the mass balance because of past difficulty in accurately evaluating meaningful gradients from widely spaced observations points.  Moreover, the gradient terms mean that both along flow and across flow information is needed to solve the equation.  Equation 1 always plays an important role in ice dynamics studies because it directly includes a time derivative term.

Typically, the calculation is applied to a large volume of ice (flow band down a glacier or across a catchment area).  In that case, start by integrating (1) through the volume (v)   
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Assuming depth independent variables and expanding along parts of the boundary where ice is flowing out and where ice is flowing in to the volume
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Since the integrands are assumed independent of depth, the expression can be written as
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where a is the area of the upper surface, Fin is the volume flux into the region, Fout is the volume flux out of the region, Fsurf is the net volumetric accumulation at the surface and base.  The analysis is simplified by choosing flow lines to be the lateral bounds of the volume, thus eliminating contributions from the sides.  This step reduces errors and eliminates the requirement for information on cross flow gradients.  Moreover the difference between Fin and Fout can be made numerically large by increasing the size of the flow band.  Following Thomas and Bentley (1977), the equation is implemented by summing the products of thickness and velocity across the input and output gates and summing the total surface accumulation.
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Here U is the surface velocity times a constant (r) which attempts to account for the depth variation in horizontal velocity.  The flux gates are usually chosen to be normal to the direction of ice flow.
Again following Thomas and Bentley, random errors propagate into equation 6 as  
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Based on the assumptions and as illustrated by equation 7, errors creep the continuity equation through several routes.  First, depth integration obscures the vertical variation in velocity, which can be important when there is strong shear at the bed and lead to ad hoc correction factors (r) of 5-15%.  Second, there is still large uncertainty (greater than 10%) in the accumulation rate especially when integrated over large areas.  Finally, there are the inherent errors in H and U.  More generally, H and U are taken to be the average over the integration interval.  As an example, important but subtle changes in longitudinal flow occur across grounding lines and here a 500 m data spacing may be warranted.  On the floating ice shelves, data spacings of kilometers are adequate.  More specifically, interferometric experience suggests errors in U can be as small as a 5-10 m per year.  This corresponds to errors of 10% or less for areas well downstream of the ice divide.  Typical radar sounding data are accurate to about 20 m which is only a tiny fraction of the total ice thickness in most glaciological areas of interest.  Because the percent error in the time variation in thickness goes roughly as the percent error of the individual observations and given the objective that ice thickness is not the dominant error source, GISMO errors in ice thickness should be less than about 5-10 %.  Combined knowledge of the surface topography and the GISMO 10 m basal-surface height-accuracy specification exceeds that requirement in most places.  Note that GISMO reflectivity data will help identify areas where there is strong and weak basal shear (water/no water).  This will further reduce errors by narrowing the range of the velocity factor, r.  Also notice that the total error decreases as the size of the flux band increases whereas the integration interval still needs to be relatively small to capture details of the H and V fields.  The implication is that the estimated thinning rate is an average for the flow band with the corresponding loss of local information on mass balance within flow band.
The implementation of (5) means that (5) yields an areal averaged estimate (usually over a large area).  Equation (1) remains attractive because with sufficiently accurate data and appropriate selection of data spacing to calculate gradients, (1) can be used to generate a granular estimate of the mass balance over a glacier (Thomas, 1976).  How might this be done?  First evaluate (2) in terms of the x and y components.
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The total change in thickness at a point is just the sum of (6) and (7)
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Gridded GISMO thickness data combined with gridded InSAR data and gridded accumulation rate data can be used to solve (8), assuming that the grid spacing is small enough to capture the meaningful gradients and that the grid values of thickness and velocity are accurate.  
Start the error analysis of (10) by defining, H, U and V to be the values at the evaluation point.  Take the error in U (U, where  is taken to indicate the error in a quantity) to be equal to the error in V.  Take  to mean the difference between two values measured about the evaluation point and subscripted when necessary to indicate differences in orthogonal directions.  Take x equal toy.  Then
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The constraints on (11) for determining meaningful differences (gradients) are the same as for the sampling interval constraints on equation 6.  But now, difference must be evaluated in both orthogonal directions.  The problems can be reduced by taking the grid orientation to be along a flow line.  This eliminates the 4th term in equation 10 and several terms in equation 11.  Here the total error decreases as the size of the differencing interval increases.  But now the size of the differencing interval is constrained by the natural variability in the flow field which limits the dimensions of x.  On the inland ice sheet, the first term in equation 11 is likely the largest.  For an ice thickness of 1000 m and a velocity error of 10 m/yr, x must be 20 km to reduce the thickening rate error to 1 m/yr.  This is a large error but there are also large changes (10 m/yr) occurring on some portions of the ice sheet.
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